Hierarchical Bayesian Nonparametric Models with Applications∗

نویسندگان

  • Yee Whye Teh
  • Michael I. Jordan
چکیده

Hierarchical modeling is a fundamental concept in Bayesian statistics. The basic idea is that parameters are endowed with distributions which may themselves introduce new parameters, and this construction recurses. A common motif in hierarchical modeling is that of the conditionally independent hierarchy, in which a set of parameters are coupled by making their distributions depend on a shared underlying parameter. These distributions are often taken to be identical, based on an assertion of exchangeability and an appeal to de Finetti’s theorem. Hierarchies help to unify statistics, providing a Bayesian interpretation of frequentist concepts such as shrinkage and random effects. Hierarchies also provide ways to specify non-standard distributional forms, obtained as integrals over underlying parameters. They play a role in computational practice in the guise of variable augmentation. These advantages are well appreciated in the world of parametric modeling, and few Bayesian parametric modelers fail to make use of some aspect of hierarchical modeling in their work. ∗To appear in: N. Hjort, C. Holmes, P. Müller, & S. Walker (Eds.), Bayesian Nonparametrics in Practice, Cambridge, UK: Cambridge University Press.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Nonparametric Hierarchical Models

Bayesian models involving Dirichlet process mixtures are at the heart of the modern nonparametric Bayesian movement. Much of the rapid development of these models in the last decade has been a direct result of advances in simulation-based computational methods. Some of the very early work in this area, circa 1988-1991, focused on the use of such nonparametric ideas and models in applications of...

متن کامل

Mixed Membership Models for Time Series

20.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 20.1.1 State-Space Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 20.1.2 Latent Dirichlet Allocation . . . . . . . . . . . ...

متن کامل

Nonparametric Hierarchical Bayesian Models of Categorization

Nonparametric Hierarchical Bayesian Models of Categorization

متن کامل

Networks of Mixture Blocks for Non Parametric Bayesian Models with Applications

OF THE DISSERTATION Networks of Mixture Blocks for Non Parametric Bayesian Models with Applications By Ian Porteous Doctor of Philosophy in Information and Computer Science University of California, Irvine, 2010 Professor Max Welling, Chair This study brings together Bayesian networks, topic models, hierarchical Bayes modeling and nonparametric Bayesian methods to build a framework for efficien...

متن کامل

Mixture Block Methods for Non Parametric Bayesian Models with Applications

OF THE DISSERTATION Mixture Block Methods for Non Parametric Bayesian Models with Applications By Ian Porteous Doctor of Philosophy in Computer Science University of California, Irvine, 2010 Professor Max Welling, Chair This study brings together Bayesian networks, topic models, hierarchical Bayes modeling and nonparametric Bayesian methods to build a framework for efficiently designing and imp...

متن کامل

Nonparametric Bayesian Data Analysis

We review the current state of nonparametric Bayesian inference. The discussion follows a list of important statistical inference problems, including density estimation, regression, survival analysis, hierarchical models and model validation. For each inference problem we review relevant nonparametric Bayesian models and approaches including Dirichlet process (DP) models and variations, Polya t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008